Package: SensIAT 0.1.1.9000
SensIAT: Sensitivity Analysis for Irregular Assessment Times
Sensitivity analysis for trials with irregular and informative assessment times, based on a new influence function-based, augmented inverse intensity-weighted estimator.
Authors:
SensIAT_0.1.1.9000.tar.gz
SensIAT_0.1.1.9000.zip(r-4.5)SensIAT_0.1.1.9000.zip(r-4.4)
SensIAT_0.1.1.9000.tgz(r-4.4-x86_64)SensIAT_0.1.1.9000.tgz(r-4.4-arm64)
SensIAT_0.1.1.9000.tar.gz(r-4.5-noble)SensIAT_0.1.1.9000.tar.gz(r-4.4-noble)
SensIAT.pdf |SensIAT.html✨
SensIAT/json (API)
NEWS
# Install 'SensIAT' in R: |
install.packages('SensIAT', repos = c('https://uofuepibio.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/uofuepibio/sensiat/issues
- SensIAT_example_data - SensIAT Example Data
Last updated 4 days agofrom:2f26fef129. Checks:OK: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win-x86_64 | OK | Nov 18 2024 |
R-4.5-linux-x86_64 | OK | Nov 18 2024 |
R-4.4-win-x86_64 | OK | Nov 18 2024 |
R-4.4-mac-x86_64 | OK | Nov 18 2024 |
R-4.4-mac-aarch64 | OK | Nov 18 2024 |
Exports:fit_SensIAT_fulldata_modelfit_SensIAT_within_group_modelSensIAT_jackknifeSensIAT_sim_outcome_modeler
Dependencies:assertthatclicpp11dplyrfansigenericsglueKernSmoothlatticelifecyclemagrittrMASSMatrixorthogonalsplinebasispillarpkgconfigpracmapurrrR6Rcpprlangstringistringrsurvivaltibbletidyrtidyselectutf8vctrswithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Produce fitted model for group (treatment or control) | fit_SensIAT_fulldata_model fit_SensIAT_within_group_model |
Compute Conditional Means | pcori_conditional_means |
Directly estimate the probability mass function of Y. | pcoriaccel_estimate_pmf |
Compiled version of 'evaluate_basis()' function | pcoriaccel_evaluate_basis |
Predict mean and variance of the outcome for a 'SensIAT' within-group model | predict.SensIAT_fulldata_model predict.SensIAT_within_group_model |
SensIAT Example Data | SensIAT_example_data |
Estimate response with jackknife resampling | SensIAT_jackknife |
Outcome Modeler for 'SensIAT' Single Index Model. | SensIAT_sim_outcome_modeler |