Package: SensIAT 0.1.1.9000

Andrew Redd

SensIAT: Sensitivity Analysis for Irregular Assessment Times

Sensitivity analysis for trials with irregular and informative assessment times, based on a new influence function-based, augmented inverse intensity-weighted estimator.

Authors:Andrew Redd [aut, cre], Yujing Gao [aut], Shu Yang [aut], Bonnie Smith [aut], Ravi Varadhan [aut], Agatha Mallett [ctb, ctr], Daniel Scharfstein [pdr, aut], University of Utah [cph]

SensIAT_0.1.1.9000.tar.gz
SensIAT_0.1.1.9000.zip(r-4.5)SensIAT_0.1.1.9000.zip(r-4.4)
SensIAT_0.1.1.9000.tgz(r-4.4-x86_64)SensIAT_0.1.1.9000.tgz(r-4.4-arm64)
SensIAT_0.1.1.9000.tar.gz(r-4.5-noble)SensIAT_0.1.1.9000.tar.gz(r-4.4-noble)
SensIAT.pdf |SensIAT.html
SensIAT/json (API)
NEWS

# Install 'SensIAT' in R:
install.packages('SensIAT', repos = c('https://uofuepibio.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/uofuepibio/sensiat/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

4.66 score 1 scripts 117 downloads 4 exports 30 dependencies

Last updated 4 days agofrom:2f26fef129. Checks:OK: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-win-x86_64OKNov 18 2024
R-4.5-linux-x86_64OKNov 18 2024
R-4.4-win-x86_64OKNov 18 2024
R-4.4-mac-x86_64OKNov 18 2024
R-4.4-mac-aarch64OKNov 18 2024

Exports:fit_SensIAT_fulldata_modelfit_SensIAT_within_group_modelSensIAT_jackknifeSensIAT_sim_outcome_modeler

Dependencies:assertthatclicpp11dplyrfansigenericsglueKernSmoothlatticelifecyclemagrittrMASSMatrixorthogonalsplinebasispillarpkgconfigpracmapurrrR6Rcpprlangstringistringrsurvivaltibbletidyrtidyselectutf8vctrswithr

Readme and manuals

Help Manual

Help pageTopics
Produce fitted model for group (treatment or control)fit_SensIAT_fulldata_model fit_SensIAT_within_group_model
Compute Conditional Meanspcori_conditional_means
Directly estimate the probability mass function of Y.pcoriaccel_estimate_pmf
Compiled version of 'evaluate_basis()' functionpcoriaccel_evaluate_basis
Predict mean and variance of the outcome for a 'SensIAT' within-group modelpredict.SensIAT_fulldata_model predict.SensIAT_within_group_model
SensIAT Example DataSensIAT_example_data
Estimate response with jackknife resamplingSensIAT_jackknife
Outcome Modeler for 'SensIAT' Single Index Model.SensIAT_sim_outcome_modeler